skip to main content


Search for: All records

Creators/Authors contains: "Brudvig, Gary W."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts. 
    more » « less
  2. Abstract

    Light-induced microbial electron transfer has potential for efficient production of value-added chemicals, biofuels and biodegradable materials owing to diversified metabolic pathways. However, most microbes lack photoactive proteins and require synthetic photosensitizers that suffer from photocorrosion, photodegradation, cytotoxicity, and generation of photoexcited radicals that are harmful to cells, thus severely limiting the catalytic performance. Therefore, there is a pressing need for biocompatible photoconductive materials for efficient electronic interface between microbes and electrodes. Here we show that living biofilms ofGeobacter sulfurreducensuse nanowires of cytochrome OmcS as intrinsic photoconductors. Photoconductive atomic force microscopy shows up to 100-fold increase in photocurrent in purified individual nanowires. Photocurrents respond rapidly (<100 ms) to the excitation and persist reversibly for hours. Femtosecond transient absorption spectroscopy and quantum dynamics simulations reveal ultrafast (~200 fs) electron transfer between nanowire hemes upon photoexcitation, enhancing carrier density and mobility. Our work reveals a new class of natural photoconductors for whole-cell catalysis.

     
    more » « less
  3. Abstract

    Many metal coordination compounds catalyze CO2electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure–reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X‐ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc‐catalyzed CO2reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi‐electron CO2reduction. CO, the key intermediate in the CO2‐to‐methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza‐N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X‐ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non‐centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co−CO adduct during the catalysis.

     
    more » « less
  4. Abstract

    Many metal coordination compounds catalyze CO2electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure–reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X‐ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc‐catalyzed CO2reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi‐electron CO2reduction. CO, the key intermediate in the CO2‐to‐methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza‐N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X‐ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non‐centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co−CO adduct during the catalysis.

     
    more » « less
  5. Sadwick, Laurence P. ; Yang, Tianxin (Ed.)